
Sequence alignment replicates reveal errors

in molecular phylogenies

Robert C. Edgar

Supplementary Material

November 8, 2021

Muscle5 algorithm

Comparison with previous methods

Balifam benchmark

1

Muscle5 algorithm

Here I provide further details of the algorithm, which is only briefly described in the Methods

section due to space constraints. The primary algorithm component of Muscle5 is PPP, a

re-implementation of Probcons with improvements including parallelisation, parameter

perturbations and support for both amino acid and nucleotide sequences. Datasets of up to a few

hundred sequences are aligned by PPP, larger datasets are aligned by Super5 (see below) which

applies a divide-and-conquer strategy to PPP.

Parallel Perturbed Probcons (PPP)

Probcons generalises the pair-wise posterior decoding alignment algorithm [1] to protein multiple

alignment, applying a consistency transformation to the posterior probability matrices. Since

publication, Probcons has remained among the top-scoring methods on protein alignment

benchmarks with small numbers of sequences, but is computationally expensive, scaling to at

most a few tens of sequences on a current commodity computer. Here, a commodity computer is

operationally defined as a c5a.4xlarge instance on Amazon Web Services

(https://aws.amazon.com/), which has 16 vCPU cores and 32 Gb of RAM. In PPP, calculation

of the pair-wise posterior probability matrices and the consistency transformation are

parallelised, enabling alignment of hundreds of sequences in times ranging from minutes up to a

few hours on a c5a.4xlarge.

PPP profile alignment (PPP-pa)

The final stage of PPP performs progressive alignment where a pair X, Y of MSAs with

associated posterior probabilities (profiles) is aligned by maximising the total posterior

probability under the constraint that columns in each MSA are held fixed. This is achieved by

calculating a matrix M as follows [2],

Mij =
∑
x∈X

∑
y∈Y

P (xi ↔ yj), (1)

where x is a sequence in MSA X, y is a sequence in MSA Y , and P (xi ↔ yj) is the posterior

probability that the letter of x in column i of X aligns to the letter of y in column j of Y . In

2

PPP, this calculation is parallelized by observing that the contributions to Mij from different

pairs of sequences in Eq. 1 are independent, and can therefore be calculated on separate threads.

The profile alignment is determined by using dynamic programming to maximise the sum of Mij

over alignment columns. I call this method for aligning a pair of profiles PPP-pa.

PPP profile alignment with subsampling (PPP-ps)

PPP-pa has complexity O(NXNY) in the number of sequences NX and NY in X and Y

respectively. For large N , this cost can be prohibitive. Super5 implements a faster

approximation to PPP-pa by selecting random subsets X∗ and Y ∗ of the sequences in X and Y

respectively. The subsampled matrix M∗ is then computed as follows,

M∗
ij =

∑
x∈X∗

∑
y∈Y ∗

P (xi ↔ yj). (2)

The maximum posterior alignment is then calculated using M∗ rather than M . I call this

method PPP-ps. Super5 aligns profiles using PPP-pa if NXNY ≤ nmax (default nmax = 2, 000),

otherwise a random subset of sequence pairs is selected and PPP-ps is used.

Expected-error distance

The expected error rate (fraction of incorrect columns) in the posterior decoding alignment A of

sequences x and y is calculated as follows [1],

EE = 1− 1

|A|
∑
i,j∈A

P (xi ↔ yj). (3)

Sequences that can be more accurately aligned (according to the HMM) have smaller EE, which

can be considered as an approximate distance measure defined on pairs of sequences (it is not

strictly a distance because the triangle inequality is not necessarily satisfied). Assuming that EE

correctly predicts accuracy, the total number of errors can be greedily minimised by aligning the

closest pair at each iteration, i.e. by progressive alignment using a UPGMA guide tree. Both PPP

and Super5 construct UPGMA guide trees using EE distances. Super5 uses EE-based

3

clustering to reduce redundancy and divide sequences into smaller sets that are tractable for PPP

(described in more detail below).

Guide tree variants

Both PPP and Super5 use progressive alignment. Variant guide trees are constructed as follows.

The goal is to identify three large subtrees a, b, c which are joined in all three possible orders

((a, b), c), ((a, c), b) and ((b, c), a). This is achieved by considering all possible bifurcations of the

original tree (which is temporarily considered to be unrooted), and identifying the edge which

most closely approximates dividing the tree into subtrees with one third and two thirds of the

sequences, respectively. The smaller subtree is a. The larger subtree bc is divided into two

equal-sized (or approximately equal-sized) subtrees b and c by a similar search for the best edge,

as shown in Supplementary Fig. 1. Including the original guide tree, this gives a total of four

variant guide trees for generating ensembles.

4

I J K L M N I J
K L M N

a

bc

K L M N

1. Split tree in 1:2 ratio

2. Split bc in 1:1 ratio

K L M N

b

c

LI J K NM NI J M LK NK L M JI

3. Assemble permuted trees

((a, b), c) ((a, c), b) ((b, c), a)

a a ab b bc c c

Supplementary Figure 1. Guide tree permutations.

1. The guide tree is split by identifying an edge which divides the tree into subtrees a and bc with approximately

one third and two thirds of the leaves, respectively. 2. Subtree bc is split into b and c with approximately equal

sizes. 3. Permuted trees are assembled. In this example, the tree is maximally unbalanced

5

This design accomplishes a number of objectives. Close to the root, there should be substantial

variations in the joining order of large groups to induce substantive variations into any bias

caused by progressive alignment. Close to the leaves, the joining order should be preserved as far

as possible because alignment accuracy correlates inversely with divergence; therefore,

closely-related sequences should be aligned before more distantly related sequences, and radical

changes to the joining order will tend to reduce accuracy. In practice, guide trees are often highly

imbalanced such that many guide tree nodes join daughter subtrees where one is much larger.

The smaller subtree is often a single sequence; Supplementary Fig. 1 shows an extreme (but not

unusual) example where all nodes are 1 : n, i.e. join a single sequence to all others aligned so far.

In such a tree, none of the pair-wise alignments joins two large groups. The construction

described here guarantees that large groups are joined close to the root even when the tree is

highly unbalanced. When the tree is more balanced, more or all of the joining order is preserved

close to the leaves, as illustrated in Supplementary Fig. 2. When multiple guide tree

permutations are applied to the same HMM parameters, e.g. in a stratified ensemble, this design

achieves a useful speed optimisation because the alignments of a, b and c can be computed once,

leaving only three pair-wise alignments per permutation to complete the MSA. If parameters are

perturbed, the guide tree is always recomputed before applying a permutation to account for

changes to the EE distance matrix.

6

I J K L MNG H

a cb

Supplementary Figure 2. Dividing a balanced tree.

Example of splitting a balanced tree into three approximately equal-sized subtrees. Note that all pair-wise leaf

alignments are preserved in all permutations, in contrast to the example in Supplementary Fig. 1 where I + J is

preserved but the order is changed for all other leaves, showing that a maximally unbalanced tree is a worst-case

scenario for this approach.

Progressive alignment variants in previous algorithms

Neighbour-Joining [3] (N-J) is sometimes used to construct guide trees, e.g. by ClustalW [4] and

T-Coffee [5]. To the extent that more closely related sequences can be aligned more accurately,

a UPGMA guide tree tends to give a more accurate progressive alignment because nodes in an

N-J tree are predicted evolutionary neighbours, which are not necessarily closest neighbours. I

have previously shown that UPGMA guide trees give higher average alignment accuracy than

N-J in Muscle v3 [6].

The heads or tails (HoT) method [7] generates variant progressive alignments from a single guide

tree by aligning reversed sequences (“tails”) at some nodes and unreversed sequences (“heads”)

at others. It is not obvious that this method will generate any variation, because parameters and

the guide tree are held fixed. The pair-wise alignment at a node is usually constructed by

dynamic programming which maximises the alignment score (sum of substitution scores and gap

penalties), and this score does not change if the alignment is reversed. If an alignment of

reversed sequences has the highest score, the equivalent alignment of unreversed sequences will

7

also have the highest score. However, reversed sequences may nevertheless give different

alignments due to issues such as floating-point rounding and tie-breaking in cases where more

than one alignment has the highest possible score. Any method for generating variants

potentially has merit and is worth considering in a larger framework, but it is self-evident that

the variations produced by HoT can explore only a tiny fraction of the space of equally plausible

alignments compared to Muscle5.

Unistrap [8] induces variant guide trees by changing the order of input sequences to a chosen

aligner, e.g. MAFFT or Clustal-Omega. As with HoT, it is not immediately obvious that changes

will be induced because the guide tree is calculated from a matrix of all pair-wise distances, and

pair-wise distances are the same regardless of input ordering. However, computational artefacts

such as tie-breaking may nevertheless cause the guide tree to change. This method has similar

limitations to HoT: variation in the guide tree may be absent or marginal, and most or all of the

ensemble may then reflect consistent bias towards identical or similar guide trees.

GUIDANCE2 generates variant guide trees starting from an initial MSA generated with a default

guide tree. Re-sampled MSAs are generated by sampling columns with replacement, and a N-J

tree is generated from each re-sampled MSA. HoT variant alignments are generated from each

guide tree. Compared to the Muscle5 procedure, this has a number of disadvantages. As

explained above, there is compelling theoretical and empirical evidence that N-J guide trees are

generally inferior to UPGMA trees. There is no lower bound on the variation in guide trees.

Systematic bias due to the guide tree in the initial MSA may be reflected in the re-sampled N-J

trees and hence propagate to the final ensemble.

Muscle5 improves on previous methods by using UPGMA, applying minimal modifications

consistent with guaranteeing substantial variation in progressive joining order, especially close to

the root where progressive bias is most likely to manifest and most likely to degrade phylogenetic

tree inference.

8

Substitution matrix variation

To the best of my knowledge, all previous methods for generating variant alignments have used a

fixed substitution matrix, except for a 1995 study of arthropod phylogeny [9] which assessed the

effects of varying the transition-transversion ratio. Here, Muscle5 introduces an important

innovation by varying each substitution score in the matrix independently of the others. This can

be motivated and interpreted as follows. Choosing a substitution matrix is equivalent to choosing

parameters for an evolutionary model; e.g., a PAM matrix is equivalent to parameters for the

JTT model [10]. If the substitution matrix is held fixed, this is equivalent to assuming that all

sites evolve according to the same model with the same parameters. Of course, of of these

assumptions are highly unrealistic; in fact, constraints vary greatly between sites, and tractable

models are drastic simplifications of selective constraints in vivo. Even if a supposedly ideal

algorithm could optimise per-site parameters simultaneously with likelihoods of the estimated

alignment and tree, the model would remain a drastic simplification and the predicted alignment

and tree could still be badly wrong. Therefore, rather than striving towards an unattainable

“optimal” solution which may be biologically incorrect, it is better to assess the consequences of

using the best tractable simplified model. Muscle5 implements this approach by sampling from a

large space of equally good, and hence equally bad, alternative parameters for an unrealistic

model. Variations in downstream inferences are necessarily due to errors, and per the central

theme of this work this observation leads immediately to quantitative assessments of uncertainty

in those inferences.

Gap penalty variation in previous algorithms

To the best of my knowledge, all previous methods for generating variant alignments use

conventional affine gap penalties with one open penalty and one extend penalty. Gap penalties

are held fixed in many of these methods, including WpsBOOT [11], HoT and Unistrap. In the

Apicomplexa study [12], gap open and extension penalties of ClustalW were explored over large

ranges of values. In GUIDANCE2, the gap open penalty is varied, but not the gap extension

penalty.

Muscle5 improves on previous gap penalty variation methods in several respects. The HMM

implements double-affine gaps with two open and two extend penalties, giving four adjustable

9

parameters. Double-affine gaps can achieve higher alignment accuracy than single-affine gaps,

and explore a larger space of alignments when parameters are varied. A single constant (α)

determines the amplitude of variations in all gap and substitution parameters, with a value

determined by biologically-motivated constraints. Crucially, Muscle5 replicates have

approximately equal average accuracy superior to state-of-the-art conventional MSA methods on

structural benchmarks, while replicates from other methods have degraded average accuracy.

Ensemble bootstrap in previous algorithms

Two previous studies [11, 13] have proposed concatenating MSAs from an ensemble into a

“SuperMSA” which is used as input to tree estimation. If columns are sampled uniformly with

replacement from a SuperMSA, this favours selection of columns with higher frequency in the

ensemble similarly to the ensemble bootstrap described in this work. However, the preferred

method in ref. [11] is WpsBOOT, which explicitly down-weights high-frequency columns. The

motivation for this design is not entirely clear to me from the paper; as best I can tell the

authors are attempting to correct for perceived redundancy when different methods generate

similar MSAs. They conclude that ”[if] the alternative MSAs are identical, the [bootstrap]

support remains the same but decreases if MSAs are diverse.” In my terminology, they find that

bootstrap values anti-correlate with dispersion; i.e., more diversity in the ensemble causes lower

bootstrap values. This is distinctly different from Muscle5, where columns with higher frequency

are more accurate and preferentially sampled during bootstrapping. This should increase

bootstrap values of correct edges when dispersion is non-zero, which is supported empirically by

Fig. 3 of the main text. Also, with Muscle5 higher dispersion does not predict that EB values

will decrease compared to FB. Note that in Fig. 3 domain QWRF has highest dispersion yet most

EB and FB values are close to 1.0. With WpsBOOT, parameters and guide trees are not varied, so

the diversity of the ensemble is limited to the number of alternative algorithms used.

Compared to Muscle5, replicate MSAs in both of the previous SuperMSA methods have low

accuracy. With WpsBOOT, the ensemble is generated by several algorithms, including some which

have accuracy significantly below the state of the art on structural benchmarks, including for

example ClustalW and Muscle v3. With GUIDANCE2, replicates have much lower accuracy than

the default MAFFT MSA which seeds the ensemble (shown below), and the MAFFT alignment has

10

lower accuracy than all Muscle5 replicates (shown in Fig. 1 of the main text). Presumably, lower

replicate accuracy degrades accuracy of both tree topologies and bootstrap values, but this is

very challenging to validate without resorting to biologically unrealistic simulations, and I will

not attempt to do so here.

Super5 algorithm

The Super5 algorithm was designed to scale PPP by introducing divide-and-conquer heuristics. A

sketch of the algorithm workflow is given in Supplementary Fig. 3.

11

Input sequences

Clusters EE<0.01 Redundant sequences

Centroids

Clusters EE<0.3

Each cluster aligned by Muscle5 Consensus sequences

UPGMA guide tree

EE distances

Progressive alignment using M5-profile

Template MSA

Final MSA

Supplementary Figure 3. Workflow of the Super5 algorithm.

Super5 applies a divide-and-conquer strategy to PPP, enabling scaling to larger datasets.

Redundancy reduction

The first step of Super5 aims to identify clusters of two or more highly similar sequences in the

input data. For each cluster, a representative sequence is identified. Representatives are

propagated for subsequent processing while the remaining sequences are set aside and added

12

back into the representative alignment in the final step. This strategy is effective in reducing

computational cost if the number of representatives is substantially smaller than the number of

input sequences, which is often the case in practice. Clusters are constructed using a greedy list

removal strategy similar to the UCLUST algorithm [14]. Input sequences are sorted by decreasing

length, with the goal of ensuring that shorter fragments do not become representatives. A k-mer

index on the representatives is used to prioritise sequence comparisons by U-sorting [14] with a

maximum of 16 rejections. If an input sequence matches a representative with expected error

rate EE < 0.01, it is assigned to the corresponding cluster, otherwise it becomes a new

representative. This strategy reduces the O(N2) cost of all-vs-all comparison of N input

sequences to an effective cost of O(NR), where R is the number of representatives. This

clustering method is called UCLUST-EE.

Coarse clustering

The next step divides representatives into clusters small enough to be tractable for PPP, i.e. a few

hundred sequences. A first-draft set of clusters is obtained by UCLUST-EE with EE < 0.3.

Clusters which are bigger than the maximum size (default 500) are sub-divided by UCLUST-EE

with EE < 0.1. Any remaining clusters which are still too large are sub-divided at random.

Intra-cluster alignment and consensus

Each coarse cluster is aligned by PPP, and the consensus sequence for each MSA is calculated by

taking the highest-frequency symbol from each column, deleting any positions where this symbol

is a gap.

Guide tree construction

An all-vs-all EE distance matrix is calculated from the consensus sequences, and a biased

UPGMA tree [6] constructed from the distance matrix.

Representative MSA

MSAs for coarse clusters are combined by progressive alignment following the guide tree. Profile

alignment is performed by PPP-pa up to a size threshold (2,000 pairs by default), otherwise by

13

PPP-ps where the threshold number of sequence pairs is selected at random. This yields an MSA

of all representative sequences.

Final MSA

The final MSA is constructed by re-introducing the non-representative sequences set aside in the

first step, using the previously constructed pair-wise alignments to their corresponding

representatives. These pair-wise alignments imply transitive alignments of non-representative

sequences to the representative MSA, which are used to construct the final MSA.

Balifam benchmark

I implemented a new structure-based benchmark, Balifam, to evaluate accuracy on large

datasets of up to 10,000 sequences. Balifam was constructed from reference alignments in

Balibase v3 [15] by adding homologs identified by PFAM [16] (Supplementary Fig. 4). Each

reference sequence in Balibase was aligned to PFAM. For each PFAM domain identified in a given

Balibase reference alignment, the subset of columns in the reference which aligned to that

domain were extracted, giving a core alignment. For each domain, the core alignment with

largest number of sequences was chosen. (This step was necessary because Balibase is highly

redundant, often re-using the same sequences in different sets). To each core alignment, I added

homologs from the corresponding PFAM “full” alignment. The PFAM alignments per se were not

used; this procedure served only to increase the size of the datasets. Random subsets of size 100,

1,000 and 10,000 respectively were selected and added to the core alignments, yielding 59 sets in

Balifam-100, 56 sets in Balifam-1000 and 36 sets in Balifam-10000. Alignment accuracy is

assessed on the subset of sequences in the Balibase alignment. Benchmark data is available at

https://github.com/rcedgar/balifam.

14

PF08240 PF00107

Balibase BBS20022

ADH1_CAEEL

ADH1_KLULA

ADH1_NEUCR

PFAM full
alignments

Reference alignment
from Balibase

Expanded input
set from PFAM

Balifam PF08240 Balifam PF00107

PFAM domain

Supplementary Figure 4. Construction of Balifam.

Balifam is constructed by using PFAM to identify domains in Balibase reference alignments. Here, three of the 58

sequences in reference set BBS20022 are shown as examples. These sequences contain two domains, PF08240

Alcohol dehydrogenase GroES-like domain and PF00107 Zinc-binding dehydrogenase. Columns from the reference

alignment matching each domain are extracted and combined with unaligned sequences from the corresponding

PFAM full alignments.

Accuracy results on Balifam

Tests were run on c5a.4xlarge instances. On Balifam-10000, Muscle5 aligns 59% of columns

correctly, which is a 13% improvement over Clustal-omega (52% columns correct) and a 26%

improvement over MAFFT (47% columns correct). This difference is significant by the Wilcoxon

test: Super5 > Clustal-omega with p = 1.2× 10−4 and Super5 > MAFFT with p = 1.4× 10−7.

On Balifam, ensembles generated by Muscle5 aligned an average of 59% of columns correctly,

13% better than Clustal-omega (52% correct) and 26% better than MAFFT (47% correct).

15

References

1. Holmes, I. & Durbin, R. Dynamic programming alignment accuracy. Journal of

computational biology 5, 493–504 (1998).

2. Do, C. B., Mahabhashyam, M. S., Brudno, M. & Batzoglou, S. ProbCons: Probabilistic

consistency-based multiple sequence alignment. Genome research 15, 330–340 (2005).

3. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing

phylogenetic trees. Molecular biology and evolution 4, 406–425 (1987).

4. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of

progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic acids research 22, 4673–4680 (1994).

5. Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast and

accurate multiple sequence alignment. Journal of molecular biology 302, 205–217 (2000).

6. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic acids research 32, 1792–1797 (2004).

7. Landan, G. & Graur, D. Heads or tails: a simple reliability check for multiple sequence

alignments. Molecular biology and evolution 24, 1380–1383 (2007).

8. Chatzou, M., Floden, E. W., Di Tommaso, P., Gascuel, O. & Notredame, C. Generalized

bootstrap supports for phylogenetic analyses of protein sequences incorporating alignment

uncertainty. Systematic Biology 67, 997–1009 (2018).

9. Wheeler, W. C. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of

molecular data. Systematic Biology 44, 321–331 (1995).

10. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data

matrices from protein sequences. Bioinformatics 8, 275–282 (1992).

11. Chang, J.-M. et al. Incorporating alignment uncertainty into Felsenstein’s phylogenetic

bootstrap to improve its reliability. Bioinformatics 37, 1506–1514 (2021).

12. Morrison, D. A. & Ellis, J. T. Effects of nucleotide sequence alignment on phylogeny

estimation: a case study of 18S rDNAs of Apicomplexa. Molecular biology and evolution 14,

428–441 (1997).

16

13. Ashkenazy, H., Sela, I., Levy Karin, E., Landan, G. & Pupko, T. Multiple sequence

alignment averaging improves phylogeny reconstruction. Systematic biology 68, 117–130

(2019).

14. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics

26, 2460–2461 (2010).

15. Thompson, J. D., Plewniak, F. & Poch, O. BAliBASE: a benchmark alignment database for

the evaluation of multiple alignment programs. Bioinformatics (Oxford, England) 15, 87–88

(1999).

16. Bateman, A. et al. The Pfam protein families database. Nucleic acids research 32,

D138–D141 (2004).

17

