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Evolver Overview 
Evolver is a collection of programs designed to simulate the evolution of the nucleotide 

sequence of a whole genome. 

 

Caveat emptor 
Evolver is a powerful and complex tool. It is not easy to learn or to use, and requires 

days or weeks on a typical compute cluster to run large genomes over interesting 

evolutionary distances. Users should expect to devote much more time and energy to 

Evolver than to a typical bioinformatics tool. A sophisticated understanding of genome 

evolution and computer science is required and is assumed in this guide. 

 

What is a genome? 
Evolver simulates the evolution of a representative genome of a species over periods long 

compared with its generation time. From Evolver‘s perspective, a ―genome‖ is thus a 

population average rather than a single individual. It is not designed to simulate 

population genetics; there is no explicit model of allele frequencies, gene flow and so on. 

Rather, it simulates the long-term averaged effects of mutation and selection over an 

entire species. 

Inter- and intra-chromosome modules 
The core components simulate inter- and intra-chromosome evolution, respectively. The 

inter-chromosome module (inter) simulates events involving two chromosomes, 

including chromosome fission, fusion and segmental moves and copies in which the 

target chromosome is different from the source chromosome. The intra-chromosome 

module (intra) simulates events occurring within a single chromosome, including 

substitutions, insertions, deletions, moves, copies and so on. This division is driven by 

software engineering rather than biological considerations: it is currently possible to 

simulate evolution of a single chromosome on a commodity computer typically found in 

a compute cluster, but an entire genome would require too much memory and time. This 

design also enables intra be run on each chromosome in parallel, reducing the wall-clock 

time for a typical simulation by an order of magnitude—just enough to make mammals 

tractable. 

Input data 
Evolver requires: 

 

 an ancestral genome sequence, 

 

 annotations describing the ancestral genome including genes, non-gene conserved 

elements, tandem arrays / microsatellites and CpG islands, 

 

 a library of mobile element and retroposed pseudo-gene sequences, and 
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 a parameter file specifying a model of evolution including rates for each type of 

mutation, amino acid substitution probabilities and so on. 

Output data 
Evolver produces: 

 

 alignments of the evolved genomes to each other and to their common ancestor, 

 

 annotations of the evolved genome(s), and 

 

 statistics of evolutionary events (e.g. number of accepted and rejected 

substitutions) and genome characteristics (e.g. intron length distribution). 

 

Events 
There are two classes of evolutionary event: mutations, which modify the primary 

sequence, and constraint changes, which modify annotations while leaving the primary 

sequence unchanged. Examples of mutations are substitutions, insertions and deletions. 

Examples of constraint changes include exon gain and loss. 

Accept probability 
Every base in the genome has an accept probability, denoted α, with a value k/255, k = 

0... 255. If a mutation affects one base then it will usually be accepted with probability α. 

If a mutation affects multiple bases then it will generally be accepted with a probability 

that is the product of α for each base (making the probability of accepting a multiple-base 

event equal to the probability of accepting all of the equivalent sequence of single-base 

events). Bases with α=0 are fully constrained and will never undergo a mutation, bases 

with α=1 are neutral and will always undergo a proposed mutation (unless the mutation 

also affects a base with α < 1). The default state of a base is neutral; no annotation is 

needed for unconstrained regions. 

Mutations 
Evolver proposes mutations at rates specified by parameters in the model. Each mutation 

is accepted or rejected with a probability determined by constraints on affected bases. If 

no annotations are provided, there are no constraints and all mutations will be accepted. 

Types of mutation are listed in the following tables. 
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Name Length 
distribution 

Description 

InterChrCopy Yes A segment of one chromosome is duplicated and 
inserted into a different chromosome. 

InterChrMove Yes A segment of one chromosome is deleted and 
inserted into a different chromosome. 

ChrSplit No A chromosome is divided into two new 
chromosomes. 

ChrFuse No Two chromosomes are fused into one new 
chromosome. 

RecipTransloc No Reciprocal translocation. 

NonRecipTransloc No Non-reciprocal translocation. 

Inter-chromosome mutation events. 

 
Name Length 

distribution 
Description 

Substitute No A single base is changed. 

Delete Yes Deletion. 

Invert Yes Inversion. 

Move Yes A segment is moved to a new location. 

Copy Yes A copy of a segment is made and inserted at a new 
location. 

Tandem Yes Special case of Copy in which the insertion 
immediately follows the copied segment. 

TandemExpand No An existing tandem array is expanded by duplicating 
one instance of the repeated motif. 

TandemContract No An existing tandem array is contracted by deleting 
one instance of the repeated motif. 

Insert Yes A random sequence is inserted. 

MEInsert No A library sequence is inserted. This is used to model 
both mobile elements and retroposed pseudo-genes. 

Intra-chromosome mutation events. 

 

When an insertion point is required (Insert, MEInsert, [IterChr]Copy and [InterChr]Move 

events), the location is selected with uniform probability over the entire chromosome. 

Events that require a segment (Delete, Invert, [InterChr]Move, [InterChr]Copy, Tandem 

and Insert) similarly sample the start of the segment uniformly over the chromosome. 

Constraint change events 
Constraint change events modify genome annotation, leaving the primary sequence 

unchanged. These events are unconditionally accepted as the ―reject according to 

constraint‖ paradigm does not apply. Typically a region is selected with a weight equal to 

the mean accept probability (MAC) of its constrained bases. Thus, more rapidly evolving 

elements are more likely to be affected. For example, an exon loss event starts by 
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selecting a gene weighted by the MAC of all bases in all CEs of that gene. If any exons 

can be deleted while leaving a valid protein coding gene, one is selected at random (with 

uniform probability in this case) and deleted; otherwise another gene is selected, again 

weighted by MAC, until a suitable gene is found. Constraint change events are listed in 

the following table. 

 
Event Description 

 

CreateCDS Create a new coding exon from existing intron sequence.  

 
CreateNGE Create a new NGE by copying constraint from an existing 

NGE. 

 
CreateNontermUTR Create a non-terminal UTR exon in an existing intron by 

finding new splice site signals (two-base donor and two-

base acceptor) that match the current sites. 

 
CreateNXE Create a new NXE (non-exon gene element) by copying 

constraint from an existing NXE 

 
CreateTermUTR Create a new first or last UTR exon. 

 
DeleteCDS Convert a coding exon into neutral sequence.  

 
DeleteNGE Convert an NGE to neutral sequence. 

  
DeleteNXE Convert an NXE to neutral sequence. 

  
DeleteUTR Convert a UTR to neutral sequence. 

 
MoveAcceptorCDS Move an acceptor splice site into a coding exon. 

 
MoveAcceptorIntron Move an acceptor splice site into its intron. 

 
MoveDonorCDS Move a donor splice site into a coding exon. 

 
MoveDonorIntron Move donor splice site into its intron. 

 
MoveNGE Move an NGE. 

 
MoveNXE Move an NXE. 

 
MoveStartCDS Move a START codon into a CDS, shortening the CDS. 
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Event Description 
 

MoveStartUTR Move start codon into UTR, lengthening the CDS. 

 
MoveStopCDS Move stop codon into CDS, shortening the CDS. 

 
MoveStopUTR Move stop codon into UTR, lengthening the CDS. 

 
MoveUTREnd Move beginning or end of transcription. 

 

Constraint change events. 

 

 

Constraint change events that modify gene structure. 

Time 
Evolver uses an arbitrary unit of time we call a tick. We typically set rates in our models 

so that one tick is approximately equal to one neutral substitution per site (NSPS). 

However, the NSPS unit is fraught with subtle problems and we prefer to regard 

measures of neutral substitution rate such as four-fold degenerate sites as emergent 

properties of the genome and model rather than a fundamental measure of time. 
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Event rates 
The rate of an event is generally specified as: 

 

 Number of events per object per tick. 

 

The ―object‖ will be a base, a chromosome, a gene etc., as appropriate. Where possible, 

the object is chosen to allow the rate parameter to be independent of the genome 

sequence and annotations. For example, the rate of UTR loss is specified as UTRs lost 

per exon per tick. Thus if the genome has 10
5
 UTRs and the rate of UTR loss is 10

-4
 the 

average number of UTRs lost in the genome will be 10 per tick. 

 

Most events use rates per base. The following table lists the exceptions. A tandem base is 

a base that was annotated as being in a tandem array or was created by a Tandem or 

TandemExpand event. 

 
Event Object 

TandemExpand Tandem base 

TandemContract Tandem base 

MoveStartCodonIntoUTR Gene 

MoveStartCodonIntoCDS Gene 

MoveStopCodonIntoUTR Gene 

MoveStopCodonIntoCDS Gene 

MoveUTRTerm Gene 

DeleteUTR UTR 

CreateNontermUTR UTR 

CreateTermUTR UTR 

DeleteCDS CDS 

CreateCDS CDS 

MoveDonorIntoCDS CDS 

MoveCDSDonorIntoIntron CDS 

MoveAcceptorIntoCDS CDS 

MoveCDSAcceptorIntoIntron CDS 

MoveDonorIntoUTR UTR 

MoveUTRDonorIntoIntron UTR 

MoveAcceptorIntoUTR UTR 

MoveUTRAcceptorIntoIntron UTR 

DeleteNXE NXE 

CreateNXE NXE 

MoveNXE NXE 

DeleteNGE NGE 

CreateNGE NGE 

MoveNGE NGE 

DeleteIsland Island 

CreateIsland Island 

MoveIsland Island 

ChangeGeneSpeed Gene 

ChangeNGESpeed NGE 

Length distributions 
Some events, such as deletions and inversions, can occur at any length scale from a single 

base to a large segment. In these cases each length is conceptually a separate type of 
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event, each with its own rate. The model specifies rates for some subset of possible 

lengths; rates for lengths not specified in the model are determined by linear interpolation 

as shown in the following figure. 

 

Constrained elements and gene model 
Constrained elements (CEs) are sets of consecutive bases with α<1. Evolver recognizes 

four CE types: 

 

 CDS (protein-coding sequence), 

 

 UTR (untranslated exonic sequence), 

 

 NXE (non-exonic CE in a gene), and 

 

 NGE (non-gene element, i.e. a CE that is not part of a gene). 

 

Genes are protein coding; there is no explicit model of RNA genes so base pairing etc. is 

not modeled. Genes are defined by a range of positions: a CE belongs to a gene if and 
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Missing values 
computed by linear 
interpolation 

Any number of 
(Length,Rate) pairs 
given as input 

Zero rate if Length 
> max given 

DeleteRates= 

#     Length        Rate 

# ==========  ========== 

           1,   1.000e-6; 

           2,   0.800e-6; 

           3,   0.600e-6; 

           8,   0.100e-6; 

 

Model parameter file 
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only if it is found within the coordinate range of a gene. The two bases at the start and 

end of each intron are designated as splice sites and are fully constrained (α=0). 

Constraints are imposed in order to maintain gene structure, including that inversions 

must include all CEs of any affected gene (with one exception: a single NXE may be 

inverted with an accept probability that is a parameter of the model), and introns and 

UTRs may not become shorter than minimum lengths that are also parameters of the 

model. Annotations are required for all CEs except splice sites, which are implied by 

introns, which are in term implied by gaps between CDS and UTR annotations belonging 

to a single gene. 

Proteins 
Evolver explicitly models protein evolution. The CDS of a gene must begin with a start 

codon and must contain exactly one stop codon which is the last codon in the CDS. Rare 

anomalies such as in-frame stop codons are thus not modeled. Frame is maintained: the 

CDS length must always be a multiple of three and mutations cannot introduce an in-

frame stop, change the start codon or substitute a stop codon with a translated codon. 

Constraint change events may change gene structure, however. Constraint change events 

leave the primary sequence unchanged, with the exception of those that move the position 

of the stop codon in which case one or two substitutions are made to preserve frame. 

 

The accept probability of a substitution within a codon is computed as a special case as 

follows: 

 

 α x (codon substitution probability) x AminoAcidProbMultiplier. 

 

Here, α is the usual accept probability for the base, the codon substitution probability is 

specified by a table AminoAcidAcceptProbs in the model, and AminoAcidProbMultiplier 

is a parameter of the model. This allows the codon substitution probabilities to be 

computed directly from known, closely-related genomes. Then if AminoAcidProb-

Multiplier is set to 1/(mean value of α in CDS bases) the effective codon substitution 

probabilities resulting from the simulation will be approximately those in AminoAcid-

AcceptProbs. 

Mobile elements 
A mobile element (ME) is modeled as a nucleotide sequence that is inserted at a 

randomly chosen point in the chromosome. Optionally, a random segment of the ME is 

deleted before the sequence is inserted. ME sequences are provided in a FASTA file for 

the intra module. The FASTA annotation line specifies the insertion rate and deletion 

parameters, for example: 

>LINE1; rate "1e-6"; avgdel "20.0"; stddev "5.0"; pct "25.0"; 

 

The name of the ME, which may not include a semi-colon, is followed by a list of 

attributes in GTF format: 

 

 http://mblab.wustl.edu/GTF2.html 

 

http://mblab.wustl.edu/GTF2.html
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Attributes are: 

 

rate 

The insertion rate in units of MEs per chromosome base per tick. 

 

rateperbase 

 The insertion rate in units of ME bases per chromosome base per tick. 

 

avgdel 

 The mean number of bases to delete, if a deletion is done prior to insertion. 

 

stddev 

 Standard deviation of the number of bases to delete. 

 

pct 

 Percentage (0...100) of insertions that undergo a deletion prior to insertion. 

 

Exactly one of rate or rateperbase must be specified. If one of avgdel, stddev or pct are 

specified, all three must be given. 

 

If rate is given, the number of MEs N inserted into a chromosome of length L in one run 

of intra for t ticks will be approximately: 

 

 N = L x rate x t 

 

The average number of bases included when an ME of length m is inserted is: 

 

 b = m – (avgdel x pct) / 100 

 

Thus, the number of ME bases T inserted into the chromosome will be approximately: 

 

 T =  Nb = L x rate x t x [ m – (avgdel x pct) / 100 ]. 
 

If rateperbase is given, T will be approximately: 

 

 T = L x rateperbase x t. 

 

This gives a more direct calculation of the proportional increase in chromosome size due 

to ME insertions, with a less direct calculation of the expected number of insertions N: 

 

 N = T/b = L x rateperbase x t / [ m – (avgdel x pct) / 100 ]. 

 

See also the later section Mobile Element Evolution. 
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Retroposed pseudo-genes 
Retroposed pseudo-genes are sequences derived from transcribed and spliced genes that 

are inserted back into the genome at random locations. They are implemented by 

extracting spliced sequences from the genome and adding them to the ME library.  

Gene duplication 
As happens in nature, gene duplication arises as a side effect of large segmental 

duplications. These are implemented in Evolver as Copy and InterChrCopy events. If a 

complete gene is copied by one of these events, then the new (copied) gene may remain 

active and / or the old (original) gene may become inactive according to a table specified 

in the model parameter file. For example, 

 
GeneDupeWeights= 

            OldSlower   OldSame OldFaster   OldLost 

 NewSlower          0         0         0         0 

   NewSame          0         0         1        10 

 NewFaster          0        10        10         0 

   NewLost          0       100         0         0 

 

The numerical values give the relative probability of a given outcome; i.e. the probability 

is the number divided by the sum of all numbers. In the above table the sum is 131 so, for 

example, the probability of  NewFaster and OldSame is 10/131 = 0.076. ―Faster‖, 

―Slower‖ and ―Same‖ refer to the rate at which the gene evolves, i.e. its mean accept 

probability (MAC). If a gene is faster, the accept probabilities of its bases are increased, 

and so on in the obvious way. ―Lost‖ means that its bases are converted to neutral. 

Cycles 
The fundamental step in executing Evolver is to invoke the inter-chromosome simulator 

(inter) once for the entire genome, then the intra-chromosome simulator (intra) once for 

each chromosome. This process is called a cycle. The output from one cycle can be used 

as input to another cycle. It is generally better to run many short cycles rather than one or 

a few long cycles as longer cycles are less biologically accurate. This is because, viewed 

as operators that transform the genome sequence, inter and intra do not commute. For 

example, it is possible to estimate the time at which a segmental duplication occurred by 

measuring the sequence divergence between the two copies. If the entire simulation was 

run as one cycle, all segmental duplications would have approximately the same 

sequence divergence and thus appear to have happened at the same time. 

File formats 
Evolver uses the following file formats: 

 

 FASTA files for sequence data, 

 

 GFF files for annotations, 

 

 Rev files, a binary file format for storing sequences and alignments specifically 

designed for Evolver and related projects, 
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 Model parameter files, text files designed to be human readable and writeable that 

specify parameters of the evolutionary model, and 

 

 Log, report and statistics text files designed to be human or computer readable. 

Rev files 
We have developed our own file format for use in Evolver and some related projects. 

Called Rev and conventionally given the file extension .rev, this format stores: 

 

 Information about one or more genomes, including the genome name and the 

name and length of one or more of its chromosomes, 

 

 Zero or more chromosome sequences, 

 

 Zero or more structures (AlnInfo‘s or AI‘s) describing alignments between two or 

more chromosome segments, and 

 

 Zero or more sequence alignments (explicit row/column matrix representations 

specifying all gaps). 

 

An AlnInfo (AI) stores data concerning one sequence alignment. For each segment 

(contiguous region of one chromosome), the AI stores the genome index (0, 1 … G–1 

where G is the number of genomes), chromosome id (an arbitrary integer identifying a 

chromosome within its genome), start and stop coordinates (positions within the 

chromosome starting at zero for the first base), and strand (plus or minus). In addition, 

the AI may store one or more attributes of the alignment. An attribute is an (id, value) 

pair where id is a small integer identifying the attribute and value is an integer or 

floating-point constant. 

 

An alignment always has an AI, but an AI does not necessarily have an alignment. 

 

The binary format of a Rev file is complicated, and we do not at present intend to 

document it. The primary reasons for its complexity are (a) indexes that allow certain 

kinds of random access to be made efficiently, and (b) the need to achieve a high degree 

of compression: at larger evolutionary distances, most alignments are short segments of 

neutral DNA; in fact, the median length rapidly approaches one base. Existing file 

formats have a large overhead for short alignments. A back of the envelope calculation 

shows why. Take the MAF format used by UCSC as an example: 

 

 http://genome.ucsc.edu/FAQ/FAQformat#format5 

 

Here is a short example: 

 

http://genome.ucsc.edu/FAQ/FAQformat%23format5
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 s hg16.chr7    27707221 13 + 158545518 gcagctgaaaaca 

 s panTro1.chr6 28869787 13 + 161576975 gcagctgaaaaca 

 s baboon         249182 13 +   4622798 gcagctgaaaaca 

 s mm4.chr6     53310102 13 + 151104725 ACAGCTGAAAATA 

 

Each segment has an ‗s‘, genome.chromosome, two numbers of the order of the 

chromosome length, a strand, spaces for padding, and the gapped sequence. Suppose the 

alignment is pair-wise and contains one letter per segment, the chromosome is ~100Mb 

long (9 digits), and genome.chromosome is 3.3=7 characters. The minimum number of 

spaces for padding is 6. The overhead per segment is therefore approximately ‗s‘=1 + 

genome.chromosome=7 + 2 x chromsosome length=18 + segment length=1 + strand=1 + 

letters=1 + spacing=6 + 1 new-line byte for a total of 36 bytes per segment = 72 bytes per 

alignment. If we now suppose the genome is 3Gb long and the number of alignments is 

~10% of the genome length, i.e. 300M, then the file size is ~300M x 72 = 20 Gb. 

GFF files 
Annotations are stored in GFF files. Evolver follows the GTF2 specification: 

 

 http://mblab.wustl.edu/GTF2.html 

 

Note that GFF records use 1-based chromosome coordinates while Evolver generally 

uses 0-based coordinates. Evolver is aware of this and converts as needed. 

  

The source and score fields are ignored by Evolver. 

GFF record types 
Evolver uses the following GFF feature types: 

 

 UTR, for untranslated exon sequences, 

 

 CDS, for coding sequences, 

 

 NXE, for non-exon conserved elements in a gene, 

 

 NGE, for non-gene conserved elements, 

 

 tandem, for tandem arrays / micro-satellites, and 

 

 island, for CpG islands (more properly, regions that are unmethylated in the germ 

line and therefore do not have an elevated C→T transition rate). 

Accept probabilities 
CE records (UTR, CDS, NXE and NGE) must have a probs attribute which specifies the 

accept probability of each base. Probabilities are represented as a string of hex digits, two 

for each base. The two digits give a value k = 0…255; the probability is then 1/k. So, for 

example, "00" represents α=0 (fully constrained) and "FF", if legal, would represent α=1 

(neutral). However, Evolver forbids neutral bases within a CE, so the largest permitted 

http://mblab.wustl.edu/GTF2.html
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probability is "FE" = 254/255 = 0.996. The number of probabilities specified must 

exactly match the number of bases in the coordinate range specified in the record. Here is 

an example: 

 
 chr20 evo NGE 5870 5878 0 . . probs "b0f4aca8e3b3e3fda9"; 

Gene indexes 
Each gene must be assigned an integer identifier that is unique within its chromosome. 

Every CE must give its gene using the gene_index attribute, for example: 

 
 chr20 evo NXE 9501 9514 0 . . gene_index 14; probs "200e0e0e1a0e0e0e400e0e180e7a"; 

Exons 
Exons are specified using CDS and UTR records, each of which typically specifies one 

exon. If a single exon contains both CDS and UTR bases, this is implied by having 

records with consecutive coordinates. The frame field must be set in a CDS record. 

Tandems 
Tandem arrays and micro-satellites are specified using records with the feature field set 

to tandem. The required replen attribute specifies the length of the repeated motif. There 

is no provision for specifying truncated or extended copies of the motif (i.e., indels within 

the array). For example, 

 
 chr20 trf tandem 3858 3884 54 . . replen 12; 

 

Evolver uses tandem annotations when executing TandemExpand and TandemContract 

events, which operate on existing tandem arrays. If no tandem annotations are included in 

the input to intra, the rates of these events will initially be zero, but new tandem arrays 

may be created by Tandem events which are then subject to TandemExpand and Tandem-

Contract mutations. 

 

The intra module keeps track of tandem arrays internally as the simulation progresses, but 

the quality of this internal annotation degrades over time because micro-mutations within 

an existing array are not taken into account and new exact or approximate arrays that are 

created by chance rather than by a Tandem event are not detected (this would require 

implementing a tandem finder algorithm and executing it on the fly). It is therefore 

recommended that a tandem finder be run at the beginning of each cycle. We typically 

use Gary Benson‘s Tandem Repeat Finder (TRF); other programs are also available. We 

provide a script trf2gff.py that converts the .dat files generated by TRF into the GFF 

format required by Evolver. 

CpG islands 
Island records have no attributes; they simply specify the coordinate range of an 

unmethylated region. For example, 

 
 chr20 evo island 187576 187851 0 . . 
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Gene structure 
The user must ensure that CDS records for the ancestral genome specify a valid coding 

sequence for each gene. The first codon must be ATG, the last codon must be a stop, and 

there must be no in-frame stops. The beginning and end of a gene are determined as the 

lowest and highest coordinate in records for its gene index. It is illegal for an NGE to 

appear within a gene. Genes may not overlap, and in particular there is no provision for 

specifying alternative splicing structures. 

Executables 
Evolver includes three executable binary programs written in C++: 

 

 evo: inter, intra and several utilities. 

 

 cvt: manipulate Rev and other files, e.g. conversion to and from FASTA and GFF. 

 

 transalign: compute a transitive alignment of genomes A and B from pair-wise 

alignments AC and CB with a third genome C. 
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Command-line reference for the inter module 
Here is a typical command line for running the inter-chromosome simulator: 

 
evo -interchr anc.seq.rev -inannots anc.annots.gff –aln inter.aln.rev         \ 

  -outchrnames chrnames.txt -outgenome ev -outannots inter.outannots.gff      \ 

  -outseq inter.outseq.rev –branchlength 0.001 -statsfile inter.stats         \ 

  -model model.txt -seed 1 -log inter.log 

 

Options are as follows. Note that here the term ―ancestral genome‖ means the genome 

used as input to this step; ―evolved genome‖ means the genome generated by inter as a 

result of the simulation. The ―original ancestral genome‖ means the input to the first 

cycle. 

 

–interchr revfilename 

[Input] The name of a Rev file containing the ancestral genome sequence. By default, 

the first genome in the file (with genome index 0) is used, this may be overridden by 

specifying –genix g where g is the desired genome index. 

 

–inannots gfffilename 

[Input] The name of a GFF file containing annotations of the ancestral genome. Island 

records should be included—while they have no effect on the simulation, the 

coordinates are mapped to the evolved genome and included in the output annotations 

that will be needed as input to the intra step. Tandem annotations will also be 

mapped, but it would be more natural to run a tandem finder after inter and before 

intra. 

 

–model filename 

[Input] The name of the file containing the evolutionary model parameters. 

 

–branchlength ticks 

[Input] The length of time to simulate in ―ticks‖, Evolver‘s arbitrary unit of time. The 

number of ticks is a floating-point number and may be specified using any string 

acceptable to the atof function in C. 

 

–seed k 

[Input] A random number seed. This may be specified as an integer constant or as the 

string stochastic (the default). If an integer seed is specified, the simulation will be 

reproducible by giving the same command line. A stochastic seed is computed as 

time(0)*getpid(), which won‘t impress your cryptographer friends but is adequate for 

this application. The seed is written to the log file, which is helpful, for example, 

when trouble-shooting a crash by enabling a second attempt at the same run. If a bug 

in Evolver is suspected (surely not!), then a reasonable strategy may be to attempt to 

avoid it by using a different seed. 
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–aln revfilename 

[Output] The name of a Rev file to contain alignments of the ancestor to the evolved 

genome. 

 

–outchrnames textfilename 

[Output] The name of a text file to contain the names of the chromosomes in the 

evolved genome, one per line. Typically, these are the same as the ancestral 

chromosome, but the number and / or names of chromosomes may change due to 

fusion and fission events. This file is typically used by a script that starts intra-

chromosome simulation following completion of the inter step. It can loop over 

chromosomes using something like (bash syntax): for chrname in `cat chrnames.txt`; 

do submit_to_cluster run_intra $chrname ; done. 

 

–outgenome genomename 

[Output] The name for the evolved genome. Defaults to evolved if not specified. 

 

 –outseq revfilename 

[Output] The name of a file to store the evolved genome sequence. 

 

–statsfile filename 

[Output] The name of a file to store statistics data. This enables statistics from a 

complete cycle, or multiple cycles, to be consolidated into a single report. The format 

of this file is designed to be easily parsed by a script rather than read by a person. 

 

–log filename 

[Output] The name of a file for miscellaneous logging. Much of the information in 

this log file is also written to the stats file for later consolidation. 

 

–targetgenecount k 

[Input] A desired number of genes. Over the course of a simulation, the total number 

of genes in a genome will tend to increase due to gene duplications. There is no 

―deactivate gene‖ event to balance duplications because we felt it was unrealistically 

hard to develop model parameters that would achieve balance in gene number. As an 

alternative, we allow deletion of excess genes by the inter module. Typically the 

target gene count k will be set to the number of genes in the original ancestral 

genome, perhaps allowing some random fluctuation. If the number of genes N > k, 

then N–k genes are deactivated (bases converted to neutral) by random selection, 

weighted by their mean accept probability. This is done before starting the simulation. 

If the –annotsminus gfffilename option is also given, GFF records for the deleted 

genes will be written to the given file. 
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Command-line reference for the intra module 
Here is a typical command line for running the intra-chromosome simulator: 

 
evo -inseq inter.outseq.rev -chrname chr20 -branchlength 0.001 -mes mes.fa        \ 

      -inannots chr20.intra.outannots.gff -statsfile chr20.intra.stats            \ 

      -outannots chr20.intra.outannots.gff -model model.txt -seed 1               \ 

   -aln chr20.aln.rev -outseq chr20.intra.outseq.rev -log chr20.intra.log 

 

Note that here the ―ancestral‖ sequence refers to the sequence that is input to this step; it 

is typically the ―evolved‖ sequence from the point of view of a preceding inter run. The 

―evolved‖ sequence now refers to the sequence that is output by the intra step. 

 

The following options are as for the inter module: 

 

–inannots gfffilename 

–outannots gfffilename 

–branchlength ticks 

–model filename 

–seed k 

–statsfile filename 

–aln revfilename 

–outseq revfilename 

–outgenome name 

–log filename 

 

Other options include: 

 

–inseq revfilename 

[Input] The name of a Rev file containing the ancestral chromosome sequence (other 

chromosomes may also be present, if so they are ignored). By default, the first 

genome in the file (with genome index 0) is used, this may be overridden by 

specifying –genix g where g is the desired genome index. Typically this is the output 

sequence file from an inter run. 

 

–chrname name 

[Input] The name of the chromosome to evolve. Alternatively the chromosome id 

may be specified using –chrid id. 

 

–mes fastafilename 

[Input] The name of a FASTA file containing mobile element and retroposed pseudo-

gene sequences. The insertion rates and other parameters for a sequence is specified 

in its annotation line, as described previously. 
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Mobile Element Evolution 
Mobile elements (MEs) evolve, typically at a significantly faster rate than the host 

genome. This process can be modeled using the intra module, though some non-trivial 

scripting is required. We have developed a framework to implement this, which is 

described below. As with many aspects of Evolver, users may to use our solution, modify 

our scripts, or develop their own. 

 

In outline, an ME is modeled as a short chromosome. ORFs that code for proteins are 

modeled using CDS annotations. ―Speciation‖ and ―extinction‖ of ME subtypes is 

modeled by a binary tree that is generated on the fly according to birth / death rates 

specified by parameters in a file read by the scripts. Each time intra is invoked, a few 

MEs are selected from the current population and designated as active, meaning that they 

are included in the ME library given to intra. MEs with long terminal repeats (LTRs) 

must be treated as special cases because intra lacks a mechanism for allowing mutations 

while maintaining 100% sequence identity between the repeats as required for a 

biologically active ME. This is handled by evolving the repeat sequence and intervening 

sequence (―body‖) as two separate ―chromosomes‖. When the full ME sequence is 

required it is assembled by concatenating (repeat-body-repeat). 

 

To perform mobile element evolution using our framework, each cycle requires the 

following files: 

 a mobile element configuration file 

 a mobile element sequence file 

 a long terminal repeat sequence file 

 a mobile element annotation file 

 a mobile element evolutionary model file 

The framework supports different mobile element classes. Each class can contain one or 

more members, one of which is active at any point. Each class is associated with a series 

of rates that describe how often members of that class get deleted from the class (or 

duplicated, giving birth to new elements in the class), and how often they are inserted in 

the genome. These are described in the configuration file, with a series of Rate 

directives. The syntax is the following: 

Rate <ClassName> <RelInsertionRate> <AvgDelFraction>    \ 

 <StdDevFraction> <Pct> <MinLen> <MaxLen> <MaxCount>    \ 

 <DupRate> <DelRate> <LifeTime> 

 

The mobile element sequence file must have FASTA entries with headers of form 

ClassName.ID or ClassName.ID:ACTIVE, where ID is an index number that 

distinguishes that element within the class (IDs need not be contiguous), and :ACTIVE 

distinguishes the previously active element (if any). 
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Some mobile element classes can be designated LTR-like classes. The members of these 

LTR-like classes must have a corresponding LTR sequence in the long terminal repeat 

sequence file, and when these members are used to generate the ME library, their LTR 

sequence is prepended and appended. These classes are distinguished in the configuration 

file with the LTRClass directive (apart from the Rate directive): 

LTRClass <ClassName> <MinLTRLen> <MaxLTRLen> 

 

If multiple LTR-like classes are needed, the LTRClass directive can appear more than 

once. The LTR sequence file must have FASTA entries with headers identical to the ones 

in the mobile element sequence file, minus the :ACTIVE suffix which should not appear 

in the annotations. 

 

At the beginning of each cycle, within each class each ME is either duplicated, deleted, or 

kept as-is, in what is called a birth-death process. The rate at which members of a class 

will be duplicated or deleted is determined by DupRate and DelRate which are in units 

of duplications or deletions per tick. The algorithm for the birth-death process is outlined 

here: 

If (DeleteRate*Branch + DupRate*Branch > 1.0) 

  Normalize such that (DeleteRate*Branch + DupRate*Branch == 1.0) 

For each class C 

{ 

  For each member E of class C 

  { 

    With probability DeleteRate*Branch do 

      If (!E.Active) Delete E; 

    Else with probability DupRate*Branch do 

      Duplicate E; 

    } 

  } 

  If all members of the class have been deleted 

  { 

    Resurrect a random member of the class 

  } 

} 

 

After the birth-death process, the sequences of the mobile elements (and, separately, the 

LTR sequences) are independently evolved. This is achieved by running intra on the ME 

sequence file using an annotation file describing ORFs and / or other CEs. The model 

used will typically be different from the model used to evolver the host genome. The 

simulation is performed for the branch length of the host multiplied by the 

BranchLengthFactor parameter supplied in the configuration file: 
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BranchLengthFactor <Factor> 

 

This is a convenient way to arrange for ME evolution to be faster than host evolution 

without adjusting a large number of parameters in the model file. 

 

After the ME are evolved, a boundary checking process takes place in order to filter 

sequences that the simulation made too long or too short. Specifically, the algorithm is 

the following: 

For each class C 

{ 

  For each member E of class C 

  { 

    If (E.SeqLen < C.MinLen) 

      Append ((C.MinLen + C.MaxLen)/2 – E.SeqLen) random bases 

    ElseIf (E.SeqLen > C.MaxLen) 

    { 

      If (E.HasGFFEntries) 

        Delete E; 

      Else 

        Chop (E.SeqLen - (C.MinLen + C.MaxLen)/2) bases 

    } 

    If (C is LTR-Like) 

    { 

      If (LTR(E).SeqLen < C.MinLTRLen) 

        Append ((C.MinLTRLen + C.MaxLTRLen)/2 – LTR(E).SeqLen) 

      Else 

        Chop (LTR(E).SeqLen - (C.MinLTRLen + C.MaxLTRLen)/2) 

    } 

  } 

  If (C.Empty) 

    Consider class C as dead 

} 

 

After the boundary check, each class is checked for excessive element count. Classes 

whose element count is greater than MaxCount are subject to random deletion of some 

members, so that in the end they have exactly as many as MaxCount. When randomly 

deleting elements, the active element is excluded. 

 

During the subsequent activation process, an active element is selected for each class. If 

the class already has an active element, it is kept active with probability 

1.0 - Branch*Class.LifeTime, otherwise it is deactivated and deleted (unless it is 

the final remaining element in that class, and that class has no other members). If there is 

no previously active element, or if it just got deleted, a new one is selected randomly. 
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Regardless of what happens, in the end there will be one active mobile element for each 

class, and these elements will be exported to the mobile element library for intra. 

  

When the sequences of active MEs are exported, the rateperbase, avgdel, stddev 

and pct parameters are set in each annotation line. These parameters are calculated from 

those provided in the configuration file in the Rate directive, with the avgdel and 

stddev being calculated by multiplying AvgDelFraction and StdDevFraction with 

the element‘s sequence length, which will include twice the LTR length where 

appropriate. 

 

The value for the rateperbase parameter, which corresponds to the insertion rate of the 

mobile element, is calculated by this formula: 

rateperbase = TotalInsertRate * C.RelInsRate / ΣC{C.RelInsRate} 

 

Where TotalInsertRate corresponds to the total insertion rate of a mobile element 

base, per chromosome base per tick, and is given in the configuration file by the 

following directive: 

TotalInsertRate <TotalInsertRate> 

 

This rate is multiplied by the relative insertion rate of the class (normalized by the sum of 

the relative insertion rates of all the classes). The library of active elements is further 

augmented by the retroposed pseudo-genes in the next step. Also, all the sequences of all 

the elements from all the classes (including the active ones) are output in a FASTA file to 

be used by the next cycle, along with the propagated annotations (in GFF) and LTR 

sequences (in FASTA). 

Retroposed Pseudo-Genes 
The following parameters in the configuration file affect the way retroposed pseudo-

genes are handled: 

RPGHeader <AvgDelFraction> <StdDevFraction> <Pct> 

PolyATail <PolyATailLength> 

MaxRPGSize <MaxRPGSize> 

CountPerTick <Count> 

 

During each simulation cycle, a total of CountPerTick*Branch approximately copies 

will be inserted into the genome. These are distributed among a potentially smaller set of 

RPG elements; this set is chosen in the following way: 

Initialize CopiesLeft = CountPerTick*Branch 

While (CopiesLeft > 0) 

{ 

  ThisRPGCopies = PickFromGersteinCurve() 
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  CopiesLeft = Copiesleft – ThisRPGCopies 

  Select a random gene whose spliced size is < MaxRPGSize, 

    and append PolyATailLength bases of A 

  Add this sequence to the ME library 

} 

 

When the element is added to the library, the avgdel, stddev and pct values are 

calculated using the values from the RPGHeader directive and the rateperbase value 

is calculated as follows: 

rateperbase = ThisRPGCopies * RPG.SeqLen / (GenomeSize * Branch) 
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Preparing the ancestral genome 
An ancestral genome is required at the start of a simulation. The sequence is required to 

be in a .rev file, annotations in GFF files are also required (unless a simulation of neutral 

DNA is desired). 

 

The sequence must consist of the letters A, C, G and T only. Wildcards and spacers such 

as N are not permitted. 

 

The inter and intra modules accept annotations describing constrained elements (CEs), 

tandem arrays and CpG islands. CEs include CDS, UTR, NXE and NGE records, as 

described in detail elsewhere. CE records must include a probs attribute, and all CEs 

except NGEs must also have a gene_index attribute. CE annotations must conform to 

Evolver rules, including: no overlapping genes, no NGEs inside genes, and the 

concatenated CDS records for a gene must begin with ATG, have an exact number of 

codons, end with a stop codon, and must have no in-frame stops. 

 

The user is free to construct an ancestral sequence and annotations in any way they 

choose. In our work, we have developed a procedure for this with some associated tools. 

We use a well-annotated model organism sequence, such as human, as our starting point. 

Protein-coding gene annotations are extracted from the UCSC genome browser. NXE and 

NGE annotations are generated according to a stochastic model. Accept probabilities are 

assigned to CE bases, also using a stochastic model. 

 

In outline, we prepare annotations as follows. The various evo options and script 

mentioned in the outline are described in more detail shortly. 

 

Chromosome sequences are downloaded from the UCSC genome browser. 

 

 The following UCSC genome browser tracks are downloaded: UCSC genes, 

MGC genes, old known genes, Ensemble genes, CpGs. 

 

 The –findns option to evo is used to eliminate runs of Ns and replace other non-

ACGT letters with randomly-chosen valid letters. This command outputs a GFF 

file documenting where blocks of Ns were removed; this GFF file is used later by 

the –xgff command to re-map annotation coordinates from the original sequence 

to the "N-less" version that will be used as input to the simulation. 

 

 The –cvtannots option to evo is used to extract a valid subset of protein-coding 

genes. 

 

 Non-coding conserved elements (NCCEs, meaning NGEs and NXEs) are 

generated using the –genncces option to evo. 
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 The –assncces assigns a subset of NCCEs to genes, converting those to NXEs and 

the remainder to NGEs. 

 

 The –assprobs option to evo is used to assign accept probabilities (i.e., generate 

probs attributes) for all types of CE. 

 

 Tandem annotations are generated using Gary Benson's Tandem Repeat Finder. 
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The findns command 
The –findns command removes non-ACGT letters from a sequence. Invalid letters are 

replaced by randomly-chosen ACGT letters (chosen with uniform probability). 

Optionally, consecutive runs of Ns can also be excised, producing a shorter sequence. In 

the latter case, a GFF file is produced to document which regions were deleted; this can 

be used by the –xgff command to adjust annotation coordinates to correspond to the new 

sequence. Typical usage is as follows. 

 
evo -findns seq.fasta -out_randns randns.fasta -out_x x.fasta -out_gff ns.gff   \ 

  -label_randns label1 -label_x label2 -minns 32 -log findns.log 

 

–findns fastafilename 

[Input] The name of a FASTA file containing one or more sequences to be processed. 

 

–min_ns k 

[Input] The minimum number of consecutive Ns to be deleted (excised) rather than 

being replaced by random letters. Default is 32. 

 

–out_randns fastafilename 

[Output] The name of a FASTA file to write the sequence with invalid letters, 

including Ns, replaced by random letters. 

 

–out_x fastafilename 

[Output] The name of a FASTA file to write the sequence with invalid letters 

replaced by random letters and runs of Ns excised. 

 

–out_gff gfffilename 

[Output] The name of a GFF file to write the input coordinates of runs of Ns that 

were deleted. The GFF feature is nblock. This is used as input by the –xgff command. 

 

–out_randns fastafilename 

[Output] The name of a FASTA file to write the sequence with invalid letters, 

including Ns, replaced by random letters. 

 

–label_randns label 

[Output] The FASTA label to use in the –outrandns file. By default, the label is the 

input label with ".randns" appended. Note that if there are two or more sequence in 

the input file, they will all get the same label, so this option should only be used with 

a single sequence in the input file. 

 

–label_x label 

[Output] As for –label_randns for the –out_x file. 



 

—29— 

 

The xgff command 
The –xgff command adjusts coordinates in a GFF file to match a sequence from which Ns 

have been removed by –findns. 

 
evo -xgff annots.gff -gff_ns ns.gff -out annots.xns.gff -log xgff.log 

 

–xgff gfffilename 

[Input] The name of a GFF file containing annotation records for a sequence before 

Ns were excised. 

 

–gff_ns gfffilename 

[Input] The name of the GFF file documenting blocks of Ns; output by the –outgff 

option to –findns. 

 

–out gfffilename 

[Output] The name of a GFF file to write the adjusted records. 
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The cvtannots command 
The –cvtannots command extracts a valid subset from a set of candidate annotations, 

eliminating overlapping genes, genes with invalid CDSs, etc. Typical usage is as follows. 

 
evo -cvtannots inannots.gff -out outannots.gff -chrname chr -seq seq.rev   \ 

  -log cvtannots.log 

 

–inannots gfffilename 

[Input] The name of a GFF file containing candidate annotation records. 

 

–seq revfilename 

[Input] The name of a Rev file containing the sequence. By default the first genome 

(i.e., genome with id 0) is assumed; this can be overridden by specifying –genix id. 

 

–chrname name 

[Input] The name of the chromosome. By default, the first chromosome in the 

genome is used. 

 

–outannots gfffilename 

[Output] The name of a GFF file to write output records. 
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The genncces command 
The –genncces command generates a set of non-coding conserved elements (NCCEs) 

according to a stochastic model. Here, "non-coding" means NXEs and NGEs; UTRs are 

not included. A better term would perhaps be "non-exon", but this could be confused with 

NXEs=non-exon elements that do belong to a gene, and we are de facto stuck with the 

existing terminology. 

 

The –genncces command does not classify NCCEs as NXEs and NGEs; this can be done 

later by the –assncces command. The primary output from the command is a GFF file 

with records having a feature type of ncce. They have no probs or gene_index attributes; 

these can be assigned later using the –assncces and –assprobs commands. The output 

thus requires significant further processing before it can be used as input to the inter or 

intra modules. 

 

Records are generated with a length distribution specified in exactly the same way as for 

events such as Delete. Coordinates are randomly distributed throughout the genome, 

except that they may not overlap regions given in an "exclude" file which will typically 

contain CDS and UTR records for protein-coding genes. Records are generated until a 

given fraction of the genome is covered by NCCEs; this fraction is given by the 

GenomeNCCEPct parameter in a model file. We typically use a value of 10 with the 

result that one tenth of the genome is covered by NCCEs. 

 

Typical usage is: 

 
evo -genncces -excl_gff annots.gff -out ncces.gff -length 100000000   \ 

  -model model.txt -log genncces.log 

 

–excl_gff gfffilename 

[Input] The name of a GFF file containing annotation records. Regions in this file are 

excluded from NCCE generation; i.e., no output record may overlap any record in this 

file. At least one record must be present as the sequence label to use for output is 

taken from this file. There must be exactly one chromosome present; multiple 

sequences are not supported. 

 

–model modelfile 

[Input] Model parameter file. The length distribution is read from the 

NCCELengthDist distribution and the fraction of the genome to cover from the 

GenomeNCCEPct parameter. 

 

–length k 

[Input] The length of the chromosome in bases. Only records for a single 

chromosome can be generated at one time.  

 

–out gfffilename 

[Output] The name of a GFF file to write the generated NCCE records. The sequence 

label to use for the output records is the one used in the –excl_gff file. 
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The assncces command 
The –assncces command converts NCCE records into NXE and NGE records, thus 

assigning some to genes and designating the rest as non-gene. 

 

Genes are identified from a GFF file containing records with gene_index attributes. This 

gives the initial start and end coordinates of each gene. Typically the gene file will 

contain CDS and UTR records and the initial start-end coordinates will therefore specify 

the transcribed part of the gene. Genes are extended to include non-transcribed regions. 

This process is controlled by three parameters: MeanInterGeneFract, 

StdDevInterGeneFract and MaxGeneMargin. Typical values we use are 

MeanInterGeneFract = 0.2, StdDevInterGeneFract = 0.2 and MaxGeneMargin = 200000. 

A region extending from the last transcribed base in one gene to the first transcribed base 

in the following gene is called an inter-gene region. Each gene has two margins, one 

from the beginning of the gene to the first transcribed base, the other from the last 

transcribed base to the end of the gene. Genes are extended so that, on average, a fraction 

MeanInterGeneFract of bases are converted to margins. The variation in this fraction for 

individual genes is controlled by the StdDevInterGeneFract parameter, which is the 

standard deviation of a truncated normal distribution with mean MeanInterGeneFract. 

NCCE records found within margins become NXEs, the remainder become NGEs. 

 

Typical usage is: 

 
evo -assncces ncce.gff -genes genes.gff -out nxenge.gff    \ 

  -model model.txt -log assncces.gff 

 

 

–inannots gfffilename 

[Input] The name of a GFF file containing candidate annotation records. 

 

–genes gfffilename 

[Input] The name of a GFF file containing records with gene_index attributes. 

 

–model modelfilename 

[Input] The name of the model parameter file. 

 

–out gfffilename 

[Input] The name of a GFF file to write the NXE and NGE records. 
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The assprobs command 
The –assprobs command assigns accept probabilities to conserved element (CE) records 

in a GFF file. 

 

The following parameters, specified in the model file, control how probabilities are 

generated. Typical values are shown. 

 
# Mean and std. deviation of mean probabilities generated for non-coding CEs. 

NCCEMeanMean = 0.8 

NCCEMeanStdDev = 0.2 

 

# Mean and std. deviation of mean probabilities generated for CDSs. 

CDSMeanMean = 0.5 

CDSMeanStdDev = 0.4 

 

# Percentage of probabilties to be shuffled when clumping. 

ClumpShufflePct = 25 

 

# Mean and std. deviation of CE clump length (~= correlation distance). 

CEClumpMeanLength = 32 

CEClumpLengthStdDev = 16 

 

# Accel factor to convert CDSMeanMean to gene NCE mean. 

GeneCDSToNCEAccel = 3.5 

 

Probabilities are sampled from truncated normal distributions: 

 

http://en.wikipedia.org/wiki/Truncated_normal_distribution 

 

A truncated distribution is required since valid probabilities have values from zero to one, 

but standard probability density functions (PDFs) have domains including all real values 

(–∞ to +∞). A truncated normal distribution T(x; a, b, μ', σ) is derived from a normal 

(Gaussian) distribution N(x; μ, σ) with mean μ and standard deviation σ  by excluding 

values x<a and x>b. Note that in our convention, μ' is the true mean of T, which is not in 

general the same as μ, the mean of normal distribution N from which it is derived. 

However, the "standard deviation" σ of T is by definition the standard deviation of its N. 

When probabilities are being generated, we always use a=0 and b=1. The process of 

generating probabilities is described in more detail under Clumping. 

  

Typical usage is as follows. 

 
evo -assprobs inannots.gff -out outannots.gff -model model.txt -log assprobs.log 

 

–inannots gfffilename 

[Input] The name of a GFF file annotation records. 

 

–model modelfilename 

[Input] The name of a model parameter file. 

 

–outannots gfffilename 

[Output] The name of a GFF file to write output records. 

http://en.wikipedia.org/wiki/Truncated_normal_distribution
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Clumping 
Base accept probabilities are generated using a clumping method designed to fulfill the 

following requirements. 

 

 Base accept probabilities (BAPs) should be correlated within a CE, e.g. a BAP lower 

than the mean should tend to follow another low BAP. 

 

 There should be a known distribution over gene mean accept probabilities (GMAPs) 

with a pre-defined mean and standard deviation. 

 

 Mean accept probabilities (MAPs) for CEs within a gene should be "spread" so that 

there is a reasonable chance that the mean for a CE will be significantly different 

from the mean for its gene. 

Informal introduction 
The idea is to take a set of probabilities and divide it into subsets so that the subsets 

(clumps) will tend to have a spread of means. This is done by 1. sorting, 2. partitioning 

into disjoint ranges according to clump length, then 3. introducing outliers by shuffling. 

 

In the case of a gene, a clump will be a CE.  

 

To introduce correlations within a CE, we divide the CE into randomly chosen 

subsequences. Each subsequence is then a clump and a CE built in this way will tend to 

have contiguous regions of probabilities higher and lower than its mean. 

The clumping algorithm 
Inputs to clumping are: 

 

A set of lengths Li, i = 1 .. N. 

 

A set of probabilities Pi, i = 1 .. L, where L = ∑ Li. 

 

Each length represents one clump. There are N clumps with a total of L positions. Each 

position i has a probability Pi. The output is a set of probability vectors Ci, one for each 

clump i, such that the means of each vector tend to differ from the overall mean: 

 

Cij, i = 1 .. N, j = 1 .. Li. 

 

The algorithm proceeds as follows. The probabilities Pi are sorted. A random order is 

chosen for the clumps, and probabilities are assigned to clumps in increasing order of 

probability and random order of clump. A clump is filled before proceeding to the next 

clump. At this point, the ranges of probabilities found in clumps are disjoint. 
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We suspect that creating disjoint subsets in this way maximizes the spread of clump 

means, but have not attempted to prove it. This is desirable, but we also want to allow 

some chance of outlier values in each clump. Spreading means and allowing outliers are 

conflicting goals. A compromise is implemented via the next step: shuffling.  

 

To shuffle, pairs of values are selected at random and exchanged between clumps. The 

more this is done, the more outliers will be introduced and the more the mean of each 

clump will tend to the overall mean. This amount of shuffling can be a user-settable 

parameter; by default 25% of bases participate in a shuffle (L/8 swaps). Based on a few 

experiments, our sense is that this is qualitatively enough to introduce outliers without 

losing the partitioning. 

 

At this stage, each clump is approximately sorted in order of increasing probability—it 

was exactly sorted when created, exceptions are introduced by shuffling. As a final step, 

the vector of probabilities for each clump is therefore randomized. 

Assigning BAPs to a CE of length L 
The motivation for clumping an individual CE is to produce correlations between BAPs. 

 

1. L probabilities are generated either according to some PDF (in the case of an NGE) or 

obtained from the output from a previous clumping step (in the case of a gene CE). 

 

2. L is partitioned into some small number of clumps of random lengths. 

 

3. The probabilities are clumped. 

 

4. Probabilities are assigned to bases in increasing genome order by first using all 

probabilities from the first clump then moving to the next. 

 

      3                             1                           4             2         5 

Random 
order of 
clumps 
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Assigning BAPs to CEs in a gene 
1. L probabilities are generated according to some PDF, where L is the total length of all 

CEs in the gene. 

 

2. Each CE is considered one clump. 

 

3. Clumping is performed using the given probabilities and CE lengths. This yields a set 

of probabilities for each CE. 

 

4. Those probabilities are assigned to each CE using a second round of clumping as 

described in the previous section. 
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Substitution rates 
Evolver assigns separate rates to each possible substitution rate: A→T, C→A and so on. 

Strand symmetry is assumed, so C→T has the same rate as A→G etc. This gives a total 

of six independent rates, specified by the following model parameters: 

 
 AC_Rate = 0.2 

 AG_Rate = 0.6 

 AT_Rate = 0.2 

 CA_Rate = 0.2 

 CG_Rate = 0.2 

 CT_Rate = 0.6 

Unmethylated regions and CpG islands 
The rate parameters above are for unmethylated regions which do not have accelerated 

C→T rates in CpG dinucleotides. Methylated regions (most of the genome in the case of 

mammals) have elevated rates of C→T substitution in CpG dinucleotides. The increase in 

rate is specified by this parameter: 

 
 CpG_C_to_T_Ratio = 10.0 

CpG sweeps 
For efficiency, accelerated C→T substitution in CpG dinucleotides are implemented 

using CpG sweeps. A few times during an intra run the chromosome is scanned in 

coordinate order searching for CpGs outside CpG islands. Each time one is found, a 

C→T substitution is made with the appropriate probability that will result in the rate 

implied by CpG_C_to_T_Ratio.  

 

Sweeps must be done often enough that only a small fraction of CpGs undergo a 

mutation to TpG. (Denote this fraction by f). This is because substitution does not 

commute with duplication: you can estimate the age of a duplication by looking at the 

number of substitutions between the two copies. 
 

The input parameter is q=CpG_C_to_T_Ratio, which is defined as: 
 

 q = (C→T rate outside CpG islands) / (C→T rate inside). 

 

We expect a typical q to be around 10. The C→T rate in CpG islands is: 
 

 s = 1 * P(C→T | C substitutes) * (1 - CGRejectProb) 

 

With typical values, s = 0.6*0.76 = 0.46. The rate outside an island is then Q = qs, with 

typical value 10*0.46 = 4.6. 

 

A rate of s is produced by "standard" substitutions, so the added rate to be implemented 

by CpG sweeps is: 
 

 R = Q - s 
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with typical value R = 4.6 – 0.46 = 4.1. 

 

In one sweep representing a duration of time t, the probability P of a given C→T 

substitution is then Rt, providing t << R. 

 

The sweep duration is then determined by f = P = Rt, hence: 
 

 t = f/R 

 

We expect R ~ 5, and choose f = 0.1 as a reasonable default; this gives t = 0.02. 
 

If the branch length b <~ t, then this will result in only a single sweep and we are back to 

the problem with duplications. We therefore set a minimum number m of sweeps, say 10, 

to ensure a detectable age distribution over duplications. Then: 
 

 t = min(f/R, b/m) 
 

The additional parameters used in implementing this scheme are: 

 
 CpGFraction = 0.1 

 MinCpGSweeps = 10 

 

Unmethylated genomes  
To specify that the genome is unmethylated, such as for Drosophila, the MinCpGSweeps 

parameter is set to zero: 
 

 MinCpGSweeps = 0 

Stationary composition state  
In our simulations we aim to keep the nucleotide composition of the genome 

approximately constant. We now address the question of how to achieve this given the 

Evolver model that specifies substition and CpG rates. 

 

Let Nx be the number of letters of type x, x = A, C, G or T. 

 

Let rxy x ≠ y be the substitution rate for x→y, i.e. the probability per unit time that a given 

letter x becomes a different letter y. 

 

Let S(x) be the complementary base, e.g. S(A) = T. 

 

By strand symmetry, 

 

 NA = NT                    (1) 

 NC = NG                     (2) 

 rxy = rS(x)S(y)                   (3) 

 

By (3) above, there are 6 independent rate parameters: 
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  A C G T 

 A  rAC rAG rAT 

 C rCA  rCG rCT 

 G rGA=rCT rGC=rCG  rGT=rCA 

 T rTA=rAT rTC=rAG rTG=rAC  

 

Over a length of time t small enough that multiple substitutions at a single site can be 

ignored, the net change in number of As is: 

 

 ΔA =  (number of changes to A) – (number of changes from A) 

 

        = NCrCA t + NGrGA t + NTrTA t – NA (rAC + rAG + rAT) t. 

 

Dividing both sides by t and using eqs. (1) – (3), the net change in number of As per unit 

time is: 

 

 ΔA/t     = NCrCA + NCrCT + NArAT – NA (rAC + rAG + rAT) 

 

  = NC (rCA + rCT) – NA (rAC + rAG). 

 

Stationarity requires ΔA/t = 0, which gives: 

 

 NC (rCA + rCT) = NA (rAC + rAG).              (4) 

 

Similarly, 

 

 ΔC/t     = NArAC + NGrGC + NTrTC – NC (rCA + rCG + rCT) 

 

  = NArAC + NCrCG + NArAG – NC (rCA + rCG + rCT) 

 

  = NArAC + NCrCG + NArAG – NC (rCA + rCG + rCT). 

 

and ΔC/t = 0 gives: 

 

 NA (rAC + rAG) = NC (rCA + rCT), 

 

which is identical to (4). 

 

Re-writing (4) in terms of the composition ratio, 

  

 (rCA + rCT) / (rAC + rAG) = NA / NC.              (5) 

 

Define pxy to be the probability that a base of type x mutates to a different type y, given 

that it undergoes a single substitution; this might be written pxy = P(x→y | x substitutes). 

Then rxy = Rx pxy where Rx is the total substitution rate for x, i.e. Rx = ∑y rxy. Then we can 

re-write (5) as: 
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 RC (pCA + pCT) / RA (pAC + pAG) = NA / NC.           (6) 

 

Hence, given the rate RA, composition and conditional probabilities pxy: 

 

 RC = RA (NA / NC) (pAC + pAG) / (pCA + pCT).          (7) 

 

Alternatively we can use pAG = pTC by eq. (3), then, 

 

 RC = RA (NA / NC) (pAC + pTC) / (pCA + pCT).          (8) 

 

We could additionally assume that: 

 

 pAC = pCA and pTC = pCT               (9) 

 

Then (8) becomes: 

 

 RC = RA NA / NC.                 (10) 

 

However, (9) is only approximately true. 

Accounting for CpG Effects 
We will call a C that is in a CpG dinucleotide and not in a CpG island an "accelerated" C 

due to its elevated C→T rate compared with other Cs. The CpG acceleration factor q 

gives the relative C→T rate for accelerated Cs vs. other Cs. Typically we expect q ≈ 10. 

We will assume that pCT = P(C→T | C substitutes) does not include CpG effects, i.e. it is 

more properly described as: 

 

 P(C→T | C substitutes and C is not accelerated). 

 

Similarly of course for the pGA, which we assume to be equal to pCT by strand symmetry. 

 

We use a prime (') to indicate rates that include CpG effects. Hence, 

 

 RA = rate of A→x for all x != A. 

 RC = rate of non-accelerated C→x for all x != C. 

 R'C = rate of C→x for all x != C, averaged over all Cs, including accelerated. 

 rCT  = rate of non-accelerated C→x. 

 r'CT  = rate of C→x, averaged over all Cs, including accelerated. 

 

Define fA  = fraction of genome that is A or T, fC = fraction of genome that is C or G. 

Stationary composition requires that the total rate of As changing to Cs and Gs, averaged 

over all bases in the genome, is equal to the total rate of Cs changing to As and Ts, 

 

 fA (rAC + rAG) = fC (rCA + r'CT).              (11) 
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Using rxy = Rx pxy, and defining F to be the fraction of Cs that are accelerated and γ to be 

the increase in average rate C→T when CpG effects are included, i.e.: 

 

 γ = 1 + F (q – 1).                 (12) 

 

Note that the increase C→T rate for accelerated Cs is q – 1, not q, because accelerated Cs 

are also subject to "normal" C→T substitutions. Now, using rAC = RA pAC etc., (11) can be 

re-written: 

 

 fA RA (pAC + pAG) = fC RC (pCA + γ pCT).           (13) 

 

Setting the tick to be one substitution per site 
Now we introduce the additional requirement that the average substitution rate is one, 

 

 fA RA + fC R'C = 1.                 (14) 

 

Solving for RA and RC, 

 

 RA   = (1 – fC R'C) / fA,               (15) 

 

 R'C  = (1 – fA RA) / fC.               (16) 

 

We can relate RC and R'C as follows: 

 

 R'C  = RC + F (q – 1) rCT              (17) 

 

   = RC (pCA  + pCG + γ pCT )             (18) 

 

Define β =  (pCA  + pCG + γ pCT ), then 

 

 R'C  = β RC.                  (19) 

 

Substituting (19) and (15) into (13) and solving for RC, 

 

 RC   = w / (fC (v + β w)).              (20) 

 

Where v = pCA + γ pCT and w = pAC + pAG. We can then get RA from (15) and the 

individual rates using rxy = Rx pxy. 

The evo_subst_rates.py script 
The evo_subst_rates.py script computes substitution rates that should, by the above 

calculations, give stationary composition and a (neutral, unmethylated) substitution rate 

of 1 per site per tick. Inputs are the numbers of A/T and C/G bases in the genome, six 

independent substitution probabilities, F (the fraction of Cs that are accelerated) and q 

(CpG_C_to_T_Ratio). These input parameters are hard-coded into the source and are 

adjusted by editing the script: 
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########################### 

# INPUT PARAMETERS 

# Edit these as desired. 

########################### 

 

N_AT = 1689122543  # for hg18 

N_CG = 1168890263  # for hg18 

 

f_CpG = 0.048      # for hg18 

q = 10.0 

 

p_AC = 0.2 

p_AG = 0.6 

p_AT = 0.2 

 

p_CA = 0.2 

p_CG = 0.2 

p_CT = 0.6 

 

The script writes the computed rate parameters to standard output in a format acceptable 

in a model parameter file: 

 
#  1.4320  gamma = (C->T rate including CpGs) / (rate without CpGs) 

#  1.2592  beta = total C->x rate, scaled to non-CpG C rate = 1.0 

#  0.8672  R_A = sum of rates Ax_Rate 

#  0.9465  R_C = sum of rates Cx_Rate (excludes CpGs) 

#  1.1919  R_C_CpG = avg rate C->x over all bases including CpG 

#  1.0000  Subs/site/tick (should be 1.0) 

#  8.3778% AT fail percent 

# 

# For composition balance these should be equal: 

#         0.4100  Rate of A or T -> C or G per site 

#         0.4100  Rate of C or G -> A or T per site 

# 

# Probs (should match input values): 

#        AC=0.2000  AG=0.6000  AT=0.2000 

#        CA=0.2000  CG=0.2000  CT=0.6000 

 

AC_Rate =  0.1734 

AG_Rate =  0.5203 

AT_Rate =  0.1734 

 

CA_Rate =  0.1893 

CG_Rate =  0.1893 

CT_Rate =  0.5679 
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Python scripts 
The following python scripts are provided. Input file names are specified as command-

line arguments, output is written to standard output. 
 

gff.py 

 A module used by scripts that manipulate GFF records. 

 
trf2gff.py 

 Convert a Tandem Repeat Finder .out file into a GFF file for Evolver. 
 

gff_featurestats.py 

Report a table derived from an annotation GFF file showing the number of records of 

each feature type and how many bases they cover. 
 

gff_featurestats2.py 

Similar to gff_featurestats.py, but compares two annotation files, e.g. ancestral and 

evolved or two different genomes evolved from the same ancestor. To include exon 

and intron statistics the gff_cdsutr2exons.py and gff_exons2introns.py scripts can be 

used. 
 

compost.py 

Report nucleotide and dinucleotide composition statistics for a FASTA file containing 

one or more sequences. 
 

compost2.py 

Similar to compost.py, but compares two FASTA files. 
 

gff_cdsutr2exons.py 

Input is a GFF file containing CDS and UTR records. Output is a GFF file containing 

records of type exon. There is typically a one-to-one correspondence between CDS-

exon and UTR-exon, but there are exceptions where a single exon has adjacent 

UTR+CDS (5') or CDS+UTR (3'). 
 

gff_exons2introns.py 

Input is a GFF file containing exon records, which must have the gene_index 

attribute. Output is a GFF file containing records of type intron. 
 

merge_evostats.py 

Input is one or more statistics files produced by the –stats option to inter or intra. 

Output is a single statistics file in the same format produced by summing over records 

of each type. Used to consolidate statistics from multiple runs prior to producing a 

report using evostats_report.py. 
 

evostats_report.py 

Input is one statistics file, usually produced by merge_evostats.py. Output is a human-

readable report. 
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The probstats command 
The –probstats command generates statistics on accept probabilities found in a GFF 

annotation file. Typical usage is: 

 
evo -probstats annots.gff -log probstats.log 

 

The log file contains a report with probability distributions for genes and for individual 

conserved element types. For example: 

 
NGE: 

Mean 0.787, std.dev 0.163 

 0.0000 -  0.1000         331  * 

 0.1000 -  0.2000           9 

 0.2000 -  0.3000          54 

 0.3000 -  0.4000         226 

 0.4000 -  0.5000         688  ** 

 0.5000 -  0.6000        1787  ******* 

 0.6000 -  0.7000        3675  *************** 

 0.7000 -  0.8000        5986  ************************ 

 0.8000 -  0.9000        7708  ******************************** 

 0.9000 -  1.0000        7648  ******************************* 

 

The histogram shows the number of records of the given type (in this case, NGE) having 

a mean accept probability falling within each bin. A final table summarizes the mean and 

standard deviation for each record type: 

 
        Type          Nr    Mean  StdDev      1      2      4      8     16     32     64    128 

============  ==========  ======  ======  =====  =====  =====  =====  =====  =====  =====  ===== 

        Gene         129  0.7323  0.1771 

         CDS        1784  0.4984  0.2949   0.30   0.29   0.25   0.19   0.09  -0.01  -0.03   0.00 

     GeneNCE       34743  0.8076  0.2083   0.04   0.03   0.02   0.01  -0.01  -0.02  -0.01  -0.01 

         NGE       28112  0.7865  0.1628   0.10   0.09   0.06   0.03  -0.01  -0.04  -0.04  -0.02 

 

The columns 1, 2 ... 128 give the correlation coefficient between bases at the given 

distance within a single record. A correlation coefficient significantly greater than zero 

indicates clustering of probabilities within  a record, which is the desired effect of 

"clumping". 
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The alnstats command 
The –alnstats command generates statistics derived from alignments and annotations of a 

pair of genomes. 

 
evo -probstats annots.gff -log probstats.log 

 

The log file contains a report with probability distributions for genes and for individual 

conserved element types. 

 


